
JOURNAL OF COMPUTATIONAL PHYSICS 63, 157-167 (1986) 

An Approximate LU Factorization Method 
for the Compressible Navier-Stokes Equations 

SHICERU OBAYASHI* 

Institute of Engineering Mechanics, University of Tsukuba, Ibaraki, Japan 

AND 

KUNIO KUWAHARA 

The Institute of Space and Astronautical Science, Tokyo, Japan 

Received March 15, 1984; revised April 16, 1985 

The approximate LlJ factorization is applied to the Beam-Warming-Steger method for the 
compressible Navier-Stokes equations. This factorization is mainly based on the implicit flux 
vector splitting technique to which the simple estimation of eigenvalue of the viscous terms is 
added. The two-dimensional interaction problem of shock wave with laminar boundary layer 
on a flat plate was solved. Numerical results confirm the efftciency and reliability of the 
present method. f? 1986 Academic Press, Inc 

1. INTRODUCTION 

The compressible Navier-Stokes equations have been used in computational fluid 
dynamics only for a limited number of special researches because of a large amount 
of computational time and computer storage. Development of efficient methods for 
the compressible Navier-Stokes equations is desired. 

Various factorization or splitting of the implicit procedure of finite-difference 
methods in delta-form can be applied to improve convergence rates for steady-state 
problems. Some attempts for the Euler equations have been made by employing the 
local eigensystem [ 11, such as the diagonal form [2] and the flux vector splitting 
[3]. The use of the local eigensystem implies an implicit upwind difference 
algorithm where only a lower or upper bidiagonal matrix appears and the inversion 
is easier than that of tridiagonal matrix. Such algorithm has an advantage to 
stability and efficiency. For the compressible Navier-Stokes equations, the implicit 
MacCormack method [4] retains its efficiency due to the simple estimation of the 
viscous terms added to the implicit procedure for the stability, although the steady- 
state solutions depend on a time increment. 
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An upwind difference implies a central difference and an additional smoothing 
term in principle. The use of an upwind one in the explicit part results in the finite- 
difference methods with uncontrollable smoothing terms. A combination of a cen- 
tral difference and an adequate smoothing term originates accuracy and reliability 
required for a steady state. 

In this paper, an approximate LU factorization is proposed by applying it to the 
Beam-Warming-Steger algorithm. Each AD1 operator is decomposed into the 
product of the lower and upper bidiagonal matrices by the LU factorization derived 
from the ideas of the flux vector splitting and the implicit MacCormack method. 
This L&AD1 factorization leads to the inversions of the scalar bidiagonal matrices 
with the diagonalization technique. The resulting method reduces CPU time and 
temporay storage, and retains the second-order accuracy in space and the reliability 
for steady-state solutions. 

2. ALGORITHM DEVELOPMENT 

A. Basic Algorithm 

The governing equations of compressible viscous fluids are the compressible 
Navier-Stokes equations, They are written in the conservation-law form. For 
brevity, a one-dimensional equation of conservation laws is at first considered to 
construct the new scheme and to analize its stability. The resulting scheme is then 
extended to the compressible Navier-Stokes equations in the following section. 

A model equation is written as, 

u, +.f, = 0, (1) 

where u is the density,fis its flux, and the subscripts t and x denote partial differen- 
tiations. This system can be rewritten as, 

24, + a(u) 24, = 0, (2) 

where a = af/au, if f=flu). The standard implicit finite-difference method in delta- 
form can be employed to seek steady-state solutions: 

(1 + BhDa) Au: = - hD(f:), (3) 

where u; = u(idx, ndt), O(h) =J;.+ ,,2 -1;-~ ,,2, Dad+’ = D(aAu?), h = At/Ax and 8 is 
a number between 0 and 1. 

First, let f be a function of u. This case implies the Euler equations. The fluxf on 
half mesh-points are evaluated as, 

f I+ 112 = (f.+.fi* ,lP (4) 

Therefore the difference operator D(f;) results in the second-order central difference 
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for first derivatives; D(fi) = (fi+ , -f,- ,)/2. The linearized coefficients ai, 1,2 can be 
chosen [S] as 

a * 
ai + I/2 = ci + l/2 = - - (3 au . rf I/2 

The central finite-difference can be replaced by the sum of the upwind differences, 
using the flux vector splitting technique [3]: 

D(cAu) = Dp (c+Au) + D, (cdu), (6) 

where c+ = (c+ Icl)/2, c- =(c-IcI)/2, Dp(c+Aui)=cfAui-c+Auip, and 
D+(c-Aui)=c-Au,+,-c-Aq. 

The modified implicit procedure of Eq. (3) is rewritten as, 

(1 +Bh(Dpc+ +D+c))Au;= -hD(f:). (7) 

The usual Neumann’s stability analysis for constant coefficients results in the con- 
dition of 9 such that tI > l/2. This scheme is second-order accurate when 9 = 4. The 
first-order scheme, when 8 = 1, is adequate to calculate a steady-state solution and 
thus used here. The left-hand side of Eq. (7) can be replaced by the LU factored 
form suggested in Ref. 3, because h2 = @At’). 

(1 +hD_c+)(l +hD+c)Auy= -hD(f;). (8) 

For a linearized analysis, this factorization introduces no error since c+c- = 0. The 
above operators, (1 + hD ~ c+ ) and (1 + hD + cP ), lead to the lower and upper 
triangular matrices, repsectively. This form requires no inversion of tridiagonal 
matrices. 

Next, let f be a linear function of u,, that is, f= -PU, where p > 0 is the 
viscosity. This case implies the diffusion equations. The values of the fluxfon half 
mesh points are calculated by the following equations, 

fifi, l/2 = f(D k (ui)lAx). (9) 

In this case, ai+1,2 describe the difference operators [6], -pD+ (*)/Ax, because, 

AfY+ l/2 = -pD, (Au;)/Ax+ O(At2). (10) - 

The implicit scheme Eq. (3) is written as, 

(1 + Bh(pD -/Ax - ,uD +/Ax)) Au; = - hD(fl), (11) 

581/63.1-II 
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where 8 must satisfy 13 B (2hp - dx)/4hp for the stability and 19 = 1 is sufficient for a 
steady-state solution. Eq. (11) can be written in the LU factored form like Eq. (S), 

where k = p/Ax. 

(1 +&D-)(1 -hkD+)&= -hD(fl), (12) 

Finally, letfbe the sum of functions of u and u,, that is, f(u, u,) =fi (u) +fi (u,). 
This case implies the Navier-Stokes equations. The evaluations on half mesh-points 
are described as Eqs. (4) and (9) for f, andf,, respectively. The change of the fluxf 
in time is estimated as follows, 

Af” = cAun + pD + (Au”)/Ax + 0( At2). (13) 

Corresponding to Eqs. (7) and (1 l), Eq. (3) can be rewritten as, 

(l+h(Dp(Ic+I+k)-D+(Ic-I+k)))Au;=-hD(f;). (14) 

The resulting LU factored form is written as, 

(1 +hDpd+)(l -hD+Li-)Au:= -hD(f‘r), 

d’= Ic+I +k. 
(15) 

This implicit procedure is of O(At), but it does not affect the accuracy of a steady- 
state solution if it exists uniquely. This scheme is of O(Ax2) at a steady state. 

B. The Navier-Stokes Equations 

The two-dimensional compressible Navier-Stokes equations are written in the 
conservation-law form, 

U, + F, + G, = Re ~ ’ (R, + S,), 

u= (t-3 pu, ,w elT, 

F= (PU, pu2 +A w, u(e +P))‘, 

G = W, PW pu2 +P, 4e +P))‘, 

R = (0, T,,, T.~.~, rlT, (16) 

s = (0, Txy, Tyy, sJT, 

T xx = (A+ 2p) u, + %u,., Tu&.=pL(y.+u,), r,:,=(~+2~)4,+~U., 

r = UT,, + UT,, + c((c2),, s = UT, + uTy-v + CQ),, 

CI = p/Pr( y - 1). 
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The superscript T denotes transpose of a vector. A perfect and calorically perfect 
gas is assumed as follows, 

P = (Y - 1 Me - PV + ~‘)/2), c2 = YPIP. (17) 

The Beam-Warming-Steger method [S, 61 applied to Eq. (16) results in the 
following approximate factorization, 

(Z+hD,(A+P))(Z+hD,(B+Q)) AU;= -hLr;, 

Lr$ = Di(l$ - R;jRe) + D,(G$ - S;/Re), (18) 

where U; = U(iAx, jdy, ndt), Di and Dj are the difference operator for i and j, 
respectively, and h = At/Ax = AtlAy. The viscous terms R and S are linearized as 
follows [6]. The elements of R are of the general form: f, =a,db,/i3x. Each 
element linearizes in time: 

where qm indicates the element of U and it is assumed that aa,/aq, = 0. This 
algorithm requires inversions of the block-tridiagonal matrices composed of the 
block matrices A, B, P and Q. 

The Jacobian matrices A and B are diagonalized [l] as, 

A= XE,X-‘, B= YE,Y--‘, 

E, = diag(u, U, u + c, u - c) and E, = diag(v, v, o + c, v - c), (20) 

where X and Y are the eigenvector matrices. The diagonal matrices E, and E, can 
be split along the sign of each eigenvalue; 

E,=E,++E, and E,=E,f +E,. (21) 

The operators in Eq. (18) can be replaced by using the flux vector splitting [3], for 
example, 

D,A = Di_ J/E,+ X-’ + Di+ XE, Xp’. (22) 

There are two ‘ways to extend the LU factorization to the two-dimensional 
method. One is the original LU factored form proposed by Jameson and Turkel 
[7]. The other is that applied to the standard ADI scheme. The formar requires 
inversions of block matrices. On the other hand, the latter can be described without 
inversion of a block matrix similarly to the procedure of the implicit MacCormack 
method. The resulting algorithm is efficient and thus proposed here. 
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The LU factored form can be obtained as, 

Z+hDi(A+P)=(Z+hDi_(XE,+Xp’+P))(Z+hD~+ (XE,JC’-P)), (23) 

if D,P can be rewritten as Dip p - Di+ P. The eigenvalues of the block matrix P are 
related to the stability for the discretized viscous terms. On the other hand, 
smooting terms can be added to the flux vector as a weight of upwind differences 
c31; 

The parameter k can be chosen so as to maintain the stability of the viscous terms 
as follows, 

k=: 
Re PAX’ 

. (25) 

This estimation is similar to the implicit MacCormack scheme, and v can be iden- 
tically set to 2~ if y = 1.4 and Pr = 0.7. 

Finally, the LU factored scheme is described as, 

(Z+hD;-A+)(Z-hD;+,+)(Z+hD,_ B+)(Z-hD,+ &) AU;= -hLr;, 

a* =X(IE; I +kZ)X-I, B’= Y(IE$ I +kZ) Yp’, (26) 

2Y 2P k=--..-.-=-, 
Re pAx Re pAy 

where the absolute value of a matrix is defined as the matrix whose elements are 
replaced by their absolute values. 

The usual fourth-order dissipation [IS, 63 is added to the right-hand side of 
Eq. (26). On the other hand, the implicit smoothing terms are not required in the 
following test problem. 

The resulting scheme is of O(At, Ax2) and unconditionally stable for linearized 
analysis. It is efficient, and needs less temporary storage because inversion of block- 
tridiagonal matrix is not required. It is also easy to program and vectorize because 
the only implicit operators of the Beam-Warming-Steger method should be rewrit- 
ten and the resulting procedure is similar to the implicit MacCarmack one. 

3. NUMERICAL EXPERIMENT AND RESULTS 

A. Two-Dimensional Test Problem 

The interaction problem of a shock wave with a laminar boundary layer on a flat 
plate [8-131 was solved as a test for the present scheme. The typical feature is 
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FIG. 1. Computational mesh and incident shock wave. Shock angle 4=32.6”, Mach number 
M = 2.0, Reynolds’ number Re = 0.296 x 106; L; the leading edge, S; the incident point of shock wave; 
(--) typical shock path. 

represented by the numerical pressure countour map in Fig. 4d. An oblique shock 
wave is incident on a laminar boundary layer. The regular reflection imposes 
pressure gradients on the boundary-layer flow. When the adverse pressure gradient 
is sufficiently large, the boundary layer separates. The resulting streamline curvature 
generates reflected shock waves. At the leading edge, a curved bow shock wave 
appears due to the streamline curvature associated with formation of the boundary 
layer. 

The computational mesh (Fig. 1) at first contained 32 x 32 mesh-points. The 
mesh increments were uniform in the x direction as Ax = l/15 and exponentially 
stretched in the y direction as Ayi = Ay,,, x 1.17’, where Ay,, = 8.31 x 1V4. Mesh- 
points successively increased by multiples of 32 to 256 points in the x direction and 
to 96 points in the y direction. The mesh increments decreased, corresponding to 
mesh refinement. The shock angle was set to 32.6 degrees, the freestream Mach 
number; 2.0, and the Reynolds number based on the distance from the leading edge 
to the shock impinging location; 0.296 x 106. Molecular viscosity was calculated by 
Sutherland’s formula. The Prandtl number was set to 0.7 and assumed to be con- 
stant. The bulk viscosity for diatomic gas, J. + 2~/3, is known to be neary equal to 
2~/3 [14], and thus it is assumed here that ,?=O. There was no difference between 
the numerical result under this assumption and that under the Stokes’ hypothesis, 
i + 2~13 = 0, in case of 32 x 32 mesh-points. 

The initial condition was taken to be uniform flow. The computation was 
impulsively started. The incident shock wave was given at the top of the com- 
putational region as the fixed boundary conditions. The upstream boundary con- 
ditions were also fixed because the freestream was supersonic. The zero-order 
extrapolation was employed at the boundary of outflow. The reflective boundary 
conditions were used at the plane of symmetry and at the wall; 
U, = diag( 1, 1, - 1, 1) U, and U,j = diag( 1, - 1, - 1, 1) U,, respectively. 

The implicit boundary condition of AU” at outflow was taken equal to 0. In the y 
direction, the implicit procedure swept first from the top with AU” = 0 to the wall, 
then swept to the contrary. The boundary flux of the later sweep was set to 0. 

B. Results and Discussion 

Results for 32 x 32 and 64 x 32 mesh-points were obtained when the residual 
IlAW, reached lo-‘, and those for 128 x 64 and 256 x 96 mesh-points, when 
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FIG. 2. Numerical results for 64 x 32 mesh-points; (-) present; ( l ) experiment; (a) surface 

pressure, (b) skin friction. 

5 x 10P4. The smoothing coefficient for the former was set to the usual value, At. 
That for the latter was taken equal to 3At, since the actual stability lessened in the 
region of the reflected expansion wave on the boundary layer. 

Figures 2a and 2b compare the surface pressure and the skin friction distributions 
calculated by the present scheme for 64 x 32 mesh-points with those by experiment 
[ 121. Figures 3a and 3b show those for 256 x 96 mesh-points. In the pressure dis- 
tribution, the peak at the leading edge and the plateau at the separated region are 
clearly observed. The numerical pressure contours for 32 x 32 to 256 x 96 mesh- 
points were presented in Figs. 4a-d where the lines indicate the contours of values 
of 1.05 to 1.40 at intervals of 0.05. Shock waves appeared as a near discontinuity 
owing to mesh refinement, such as the bow shock wave and the double reflected 
shock waves. Figure 5 shows various numerical contour maps near the location of 
incidence for 256 x 96 mesh-points. In Fig. 5c, incomressibility was assumed to 
evaluate stream function which was set to 0 at the wall and multiplied by lo*. The 

FIG. 3. Numerical result for 256x 96 mesh-points; (-) present; ( l ) experiment; (a) surface 
pressure, (b) skin friction. 
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FIG. 4. Numerical pressure contours. (a) 32 x 32 mesh-points, (b) 64 x 32 mesh-points, (c) 128 x 64 
mesh-points, (d) 256 x 96 mesh-points. 

skin friction distribution in Fig. 3b suggests a structure of the separated bubble, and 
this is consistent with that obtained in Fig. 5c. These results are consistent with 
experimental and other numerical results. 

It was confirmed that the present scheme has the advantageous property of 
independence of the size of the time increment owing to the delta-form. 

FIG. 5. Numerical contour maps near the incident point of shock wave for 256 x 96 mesh-points. (a) 
pressure contours at intervals of 0.05, (b) density contours at intervals of 0.05, (c) stream function con- 
tours at intervals of 0.02. 
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The maximum CFL numbers were about 60 in the present computations. For the 
two finer meshes, the run times required to reach the steady state were about 15 in 
nondimensional time. The convergence rates in mesh refinement decreased owing to 
the time increments bounded by the actual stability. 

The CPU time per step is reduced about 20% compared with that of the implicit 
MacCormack method. The computational efforts are totally saved less than a half. 
This reduction is due to its having less arithmetic operations for the explicit part 
and to the independence of the size of the time increment. 

The CPU time is also reduced about 5% compared with that of the LU factored 
form for the two-dimensional implicit operator proposed by Jameson and Turkel 
[7, 151, in case of the Euler equations. The LU factorization method with ADI is 
more efficient than that without ADI. The latter requires the inversions of 4 x 4 
block matrices. Such inversions are still costly, although the number of the resulting 
implicit operators is fewer than that of the present one. 

4. CONCLUSION 

The approximate LU factorization to the Beam-Warming-Steger method has 
been developed to efficiently compute steady-state solutions. The resulting method 
is of O(At, Ax’) and has the following advantageous properties: 1. efficiency owing 
to the highly convergence rates and to the reduction of arithmetic operations per 
time-step, 2. reliability for steady-state solutions. It is also easy to program and vec- 
torize. 

The two-dimensional interaction problem of shock wave with laminar boundary 
layer is solved in order to test the present method. The numerical solutions rapidly 
reach the steady state with large CFL numbers. They are also independent of time 
increments. It is shown that the results for the finer mesh precisely represent the 
global flow field, especially the phenomenon of reflection of the incident shock 
wave. 
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